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Problematic:

What is the foundation of Systems
Engineering?
Answer: Systems Theory => Schemas
Theory
Given that, what is the nature of
Design?
Answer: Quadralectics
Given that, what is the implication for
Practice?
Answer: Language Oriented Design



Research Program began with an attempt to understanding
Real-time Software Architectural Design Methods

VLM
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AGENT » FUNCTION
Use Case Mapping

Worldline/Scenario
Sequence Diagram
Dataflow
Object oriented

i

Relativistic
Spacetime
Relations between » DATA
Event and Data
when there is no
gloabal clock

EVENT




Methodological Distinctions

Requirements

constraints
no order
AGENT|FUNCTION
viewpoints
partial|order
partial order linear order
with distance without distance
Minimal Minimal
Method Method
Dual A Dual B
full order
EVENT / DATA
viewpoints

G. Klir's Methodological Distinctions and the relationships between
the Viewpoints and Minimal Method Duals



Software and Hyper Being

AGENT

Singularity of
Hyper Being

FUNCTION

DATA

EVENT

Hyper Being singularity at core of Real-time System



GASM and Minimal Methods of Design
are duals

Meta-methods unify
viewpoints in each Rule of
the Gurevich ASM
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Minimal / \ Minimal
Method RULES Method
Dual A Dual B

N /

EVENT / DATA !

Methods are bridges
between separated
viewpoints that produce
slices of Turing Machines



ISEM

Four viewpoints on Real-time System Design

Minimal methods are slices of a Turning machine and that
explains the wholeness of the methodological field

Viewpoints related to G. Klir ASPS Methodological
Distinctions causes Field to be lopsided

Fits into Klir’s concept of Background Variables
— Population, Space, Time

Many of the minimal methods appear in UML/SYSML
profiles

Each minimal method can be expressed in its own
Architectural Domain Specific Language (ADSL)

See Wild Software Meta-systems circa 1996



Transitioned from Software Methods research to working on Systems
Engineering Foundations

Systems Theory

interdisciplinary

Other schemas:

Systems Engineering

Pattern
Form
Domain

Schemas Theory
next higher level of abstraction

U. Eco
Kant & Platypus
Math & Geometric Schemas

Schemas Engineering



Hypothesis §’

dimensions

Pluriverse 8,9
Kosmos /7,8
World 6, 7
Domain 5,6
OpenScape 4, 5

Ten Schemas %

* Schemas are the templates of
understanding spacetime
organizations, which we project a

priori (ala Kant) >ystem 3,4

e Rule: Form 2,3
* Two Schemas per Dimension Pattern 1,2
 Two Dimensions per Schema Monad 0,1
Facet -1,0

* Nested Hierarchy with Different
Scopes
* Autopoietic Reflexive Structure



Natural Limits of our Comprehension of Organizational Structures of Phenomena

Simplicity, Smaller Scope

Greater Synthesis, Higher Synergy, Greater Scope

>

Experienced

Two

Timelines

F theory 12
M theory 11
String theory 10
Pluriverse 8,9
Kosmos 7,8
World 6, 7
Domain 5,6
Openscape 4,5
System 3,4
Form 2,3
Pattern 1,2
Monad 0,1
Facet -1,0

7+/- 2 dimensions
Independent Variables

Hypersphere surface max
Maximal Design Space
Hypersphere volume max



Design as Sign Engineering

Pieter Wisse in his dissertation pointed out the semiotic dimension of engineering

Meta-levels of the Sign
Design is the third meta-level of the sign

Kind of Kind of Mode of being-in- | Psychological | ego type
Being sign the-world concomitant

Ultra obsign handless lost singularity
Wild resign out-of-hand encompass enigma
Hyper design in-hand bear guery
Process ensign ready-to-hand grasp Dasein/eject

Pure sign present-at-hand point Subject/object



Design:

Differance (differing/deferring)

— Heidegger Being (crossed out)

— Derrida

— “slip-sliding away” (Paul Simon)
Grammatology (science of traces)
Traces of potentials in possibility

— Lead to emergent eventities

Plato’s Third type of Being in the Timeous




Differance: non-representablity

Peter Naur

— No amount of documentation can capture a design
completely, you must talk to the designer to
understand a design completely

Software as an artifact has the nature of
Differance embodied within it

Software makes systems adaptable but also
makes design very difficult

Design is fated to embody non-representable
differance



How design embodies non-
representable differance

0d - Monolectic - Dogmatic Uncritical Philosophy
1d - Dialectic - KANT static, HEGEL dynamic
2d - Trialectic - HEGEL work (prior to advent of spirit)

3d - Quadralectic — B. Fuller dynamic minimal system
4d - Pentalectic — Synergistic system and meta-system



Multilectics Structured by Meta-levels
of Being

Dogmatism of  Monolectic Pure Static Point

the uncritical

od

Aufhebung 1d  Dialectic Process Dynamic Grasp
Work that gives Trialectic Hyper Slippery Bear

rise to the

product 2d

Minimal System Quadralectic Wild Fragmented Encompass

3d (tetra, knot,
torus, mobius)

Pentachora in Pentalectic Ultra Singularity Lost
4d space



Composition of the Quadralectic
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Quadralectics of Design:
Moments at non-representable trace level

Concept > Essence

A

\ 4

Design < Perspective




Moments of the Quadralectic

Pentalectical
Moment
simile
Insight

!

Juncture/Joining
quasi-causal

frace

NEXUS

!

requirement

Ambience

‘

Opacity
Obscuration
Unclearing
no-target

CES5s

Bystander
proclivity

actuality

Author

fendency

Amanifestation
anifestation

significance
Whole
Schema

Emptiness Void
Ultra Being

Picture

Partial Schema

Character
disposition

relevance

Wild Being
Hyper Being

Plan

Partial Schema

Reader
inclination

recognition

Quadralectic
A,
(synecdoche metonymy metaphor irony ﬁ]
Concept Essence Perspective Design
thol.ght . action, perception Expression
Representation Behavior Stance Content
formal cause efficiant cause final cause material cause
imprassion movegment positioning sen%tion
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o fulfillment
Model

Partial Schema
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view Scene
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l when
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Four Design Viewpoints and
Quadralectic

N
=
AGENT FUNCTION 5
stance representation E
Image Focus =
surroundings circumstance £
@
3]
EVENT DATA =
behavior content 2
Object Signature o
situation context =
LL
Time Space



Peirce’s Principles of the Architectonic

Characteristic

Seventh Outside the singularity new
Sixth Poise new
Fifth Integrity Fuller
Fourth Synergy Fuller
Third Synthesis (Continuity) Peirce
Second Relata Peirce
First Isolata Peirce
Zeroth Void/Emptiness new

Neganary Inside the singularity new



Design Field is widest at the Hyper Being level
Quadralectic is inscribed in the Design Field

Ultra Subflety Affigity Simultaneity
wild Refineme&nt Q
L 2
Q , s — B -
Hyper Q Qualia c Kind D Topology bp / Synergy
O (D)} ® (.7)
- n % Q
Process 8 Spectra LluJ) Category Q O Lattice
o
Pure

being individual element array component



Design appears as
we move the
synthesis toward
higher levels of
synergy, integrity,
and poise

Sextalectic
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Fragmentation goes to
\ core of Being

Wild Being
and Hyper
Belng are 'l\ ~~~~~ contraction of
duals of each
other related
to the

contraction
and expansion

of being-in-

the-world

N\ expansion of
being-in-the-world
in-hand
bearing

\
being-in-the-world

dehiscent cracks
ground state



lcosahedron

1-12-30-20-1
vV E F

DUALITY

V EF
1-20-30-12-1

Pentahedron contracted embedding or
expansion into the fourth dimension Dodecahedron

Self-Dual
Pentahedron
1-5-10-10-5-1

VEFS



Pentalectic
has an
emergent
surplus
signified by
the fifth
Tetrahedron

Bonus
EMERGENT
EFFECT

Fifth
DIALECTIC

DIALECTIC
DlALECTIC
Anti- DIALECT!C
DIALECTIC
"
‘\ £>YN7E

PENTALECTIC




Design Landscape

We need a way Praeto Optima
to easily explore —

the design
landscape for the [
systems we build.

.

Point Design

Y
Domain <¢==p Model




Answer

Domain Specific Languages
that incorporate Models
which can be varied
to move through the design landscape
and represent domain specific concepts

as well as the minimal methods used in the
architectural domain of System Design



Conforms to
language syntax
and semantics
Not understood
by domain
experts

Code

Internal
DSL

Complex syntax
for nesting
Closed Turing
Complete

Too general
Semantics
determined by
compiler actions

DSL issues

e Difficultto

work with  «

e Closerto .

Model .

Abstract
Syntax

Programming
Languages

Implementation

Tree
I N

Textual

Parser necessary
Non-standard
Technologically
Intensive

External

DSL
I I I B S S .

Non-standard
must be
developed and
added to tool

Profiles

Domain Level

e Minimal Methods
* Graphical

UML/SysML Representation
* Profiles for
Extension
*  Monolithic
without unity
Design * Semantically

Weak



A Solution

Wittgenstein’s Tractatus

Unbind design language from programming
language for the design activity

Simplify Language Structure without nesting

Allow multiple connections in a single statement
— more expressive and synthetic

Semantics = Knowledge capture rather than
complier execution

Give up primary Visual representation mode
Give up primary goal of parse-ablity




Formal System

(unity), ~ completeness
b (totality)

Consistency

context

Clarity
(well-formedness)



Add Reality to the Formal Model

Cons\istency

(unity). _ completeness
: (totality)

Clarity
(well-formedness)

completeness
(totality)

----- context

Clarity
(well-formedness)



Aspects and Properties

consistency

TRUTH IDENTITY
0 >
7] =
Q I
c QO
2 =
v =
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S <
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PRESENCE L REALITY Qo
vaIidatabi}Ky . Q
\



Para-Formality

- -

——»
"

Para-complete Hyper

’——_*
- Para-consistent Be| ng

~.--—*

Almm Para-cl .
. Clear ( “=-zeser | Design
Sso \\~ MOdel
o




Model
Represented
as DSL
moving
across Design
Landscape

N~~
---—_-»



People can make up languages more easily
than they can learn already existing languages

made up by others

Fundamental Efficiency to be exploited in Domain Specific Language
Model Development

Schemas have the same structure as language and thus there is an
internal coherence between language and schemas

Language Oriented Approach unbinds Design Language from
Programming language during design process

Allows for Para-Properties related to all Aspects of Being

— Para-
. Consistency — Math of Certainty Kinds of Being

« Completeness Determinate Pure

e Clarity

» Verification Probability Process
* Validation

« Coherence Fuzzy Hyper

Propensity wild



Design of Design

Multiple relationships for one statement
Textual not graphical, at first

Exploit Synthesis not just relations
Precission vs. Precision

Synthesis vs. Analysis

Express each fact about design as it is known
— Lacks complete knowledge to start with
Use language template in Spreadsheet

— Retooling not necessary — tool already available

— Eases adoption of the core of Domain Specific Model
Development



rb rr r/— M M

Snumber
Sname
arrow
Family

Language
Package
id
Operator
Switch

Noun0/Operand0

id
Verb1l

Preposition1/Adverb1

Nounl

id

Qualifierl
Verb2
Preposition2
Noun2

id

Qualifier2
Verb3
Preposition3
Noun3

id

Qualifierd
Verb4
Preposition4
Noun4

id

Qualifierd
period
znumber

Language Statement Number
Statement Name

decoration

Language Family

cMLO1

Edgeldentifer

CORE

Domain Specific Language Name Meta

Package Name

identifier
Operator
Switch

Operand / Noun

identifier
Verb

Preposition
Noun

identifier
Quialifier
Verb
Preposition
Noun
identifier
Qualifier
Verb
Preposition
Noun
identifier
Qualifier
Verb
Preposition
Noun
identifier
Quialifier

Permanent Identifier

language
id
Define

identifier

z1

> Prefix

Operator/
-~ Operand

— SVpOq

VpOq

VpOgq

VpOg

} Postfix



Package/Preposition0
id

Operator/Verb0
Switch/Qualifer0

Noun0/Operand0
id
Verbl

Preposition1/Adverb1l
Nounl

id

Qualifierl
Verb2
Preposition2
Noun2

id

Qualifier2
Verb3
Preposition3
Noun3

id

Qualifier4
Verb4
Prepositiond
Noun4

id

Qualifierd

Four-way synthesis

Pkg/Operator ) .
/Switch/ possible in each
Operand statement
[ MW
Op®  Pkg?(in) Switch?©
Opnd
VpOq V! pt o! gt
V2 P2 02 92
Vpoq V3 P3 03 q3
\VA&: p4 0% q4
VpOq
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Meta“model = Spreadsheet language structure
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Reflexive Language about the ISEM Language
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SVpOg Template

| period |
preposition qualifier —p

has
contalns i i
contains [ punctuation |
contains 1
I rontai A
template ntai contgins.

contains F| adverb



Language as structure and as text

string

T
has
[

format

A

context

!

has

DSL language

has

L

L has— ]

sequence

Y
package [* has text
[
has
Y has
start

has

I—.- finish

'

| paragraph |
I

has
L d

hathas

‘]

has

statement

L

parser

has———m]

position

grammar

has

'

structure




Statements of Design facts are the

Basis of the Language

A
has " - topic e includ
section — has P S
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Topic Maps included in language
description to give access to Models

.
hag———— leIC includes——
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. semantics [ Texpresses— syntax
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AST tree representation included

| tree q—has—‘ s #

has startnode
hasg i - | l
has path
edge
fos] nst:l. ‘n has
connects to
|




Operator and Operand structure

, syntax has
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Semantics explicitly represented

statement
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Metadata

metadata containg l

Snumber

oo tains——— Sname

cntaps—————»= Arrow (tag)

contains _Fontains

o0 = family
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| »| language

Znumber




Recently added concepts which show
relation between topics and model

has -
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Relation between operators
and operands and AST tree

free ‘___JW}W o

| F nonterminal
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Combination of Syntax and Semantics
fully defines the language
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statement
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CMLO1
CMLO2
CMLO3
CMLO4
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arrow
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Package
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Noun0/Operand0
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Verbl

Prepositionl/Adverb
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edge
element
grammar
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nonterminal
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operand
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CML30

CML31
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Sname string
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Znumber "Znnnn"



CML161
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CML54
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Modus Operendi

Make up language using existing languages as
examples

Existing languages cover architectural subjects

Domain languages should be patterned on
architectural languages

Allow single facts to be recorded

Give consolidation statements at various levels as
necessary

Exercise for the Student

— Take a complex design view chart and convert it into a
language representation that captures the knowledge



Ontology and Domain Specific
Languages

* By creating a language that describes an
expert’s view of a domain, we are producing
an ontology of that domain by identifying
significant nouns, verbs, qualifiers, and
relationships in a synthesis

* The synthesis is the multiple relationships that
can be obtained at the same time when
brought together by the statements of the
language



Features and DSLs

* Feature differences can be specified by
configuration statements added to the
language

* Feature trees allow for Product Line
Engineering and Reuse between products

* A feature language could be created to be
explicit in relation to the different features
that various versions of the product embody



Aspects and DSLs

* Cross cutting concerns are easily implemented
by small domain specific languages that
mention orthogonal concerns

* Aspects are the duals of objects
* Mass vs. Set orientation



Models and DSLs

A coherent model of a domain and its design
architecture provides a complete synthesis of
descriptive statements

Models in Mathematics are all the true
statements about a category.

Thus the DSLs implement the model explicitly in
the statements that are produced about a given
object within the design

Mathematical models must precede the
implementation of programmatic models if the
models are to be coherent



Parsers and DSLs

* Parsers can be written to read the design or
domain language and produce database or
network representations once the language
has matured so that it is no longer radically
changing

e Statement relationships can be checked and
OCL constraints applied to the model after the
flux of design has settled down



TextUML

TextUML can be used to align with UML 2.0
and should be extended to align with SysML

Using textual UML means we do not have to
reinvent the UML2 in textual form

Xtext textual UML converter can be used to
produce graphical representations

Human Readable UML is also available



Other considerations

Textual representations can be CMed in a normal GIT
or other repository

OCL can be used to enforce constraints on the model

Gurevich ASM and Wisse Metapattern methods can be
used across all the schemas as a basis for modeling
pre-design causality and computablity

This offers a bridge from Requirements to Design

Design occurs when performance questions begin to
impact the representation

Architectural Designs are the “staticware” that give a
framework for detailed design



Other options

* DSLs can be developed into External Parsed
DSLs

* They can be ported into DSL friendly

languages such as Pi, Converge, M (Oslo),
MPS.

e Other programing languages of interest (as
infrastructure) are Mira, Scala, Fortress,
Falcon, Factor (Forth)



At the Systems Engineering Level

Use DSLs to capture knowledge.

Emphasize cognitive coherence, not compile-ability
Use GASM to show causality and computability
Use Metapattern to derive objects from context

Both DSLs and GASM can be used like a SLOC to measure work
performed at the Systems level

In each case we are looking for a complete model so that the
requirements coherence can be checked through the coherence of
the GASM model or the DSL Design Model

Model is a synthesis first, not a simulation support. Simulations can
come later when the design stabilizes

The model is a support for thinking about the system that is being
built



