Integral Systems Engineering
Methodology

Kent Palmer
2011.04.11
http://kdp.me kent@palmer.name

http://kdp.me/

Problematic:

What is the foundation of Systems
Engineering?
Answer: Systems Theory => Schemas
Theory
Given that, what is the nature of
Design?
Answer: Quadralectics
Given that, what is the implication for
Practice?
Answer: Language Oriented Design

Research Program began with an attempt to understanding
Real-time Software Architectural Design Methods

VLM
-

AGENT » FUNCTION
Use Case Mapping

Worldline/Scenario
Sequence Diagram
Dataflow
Object oriented

i

Relativistic
Spacetime
Relations between » DATA
Event and Data
when there is no
gloabal clock

EVENT

Methodological Distinctions

Requirements

constraints
no order
AGENT|FUNCTION
viewpoints
partial|order
partial order linear order
with distance without distance
Minimal Minimal
Method Method
Dual A Dual B
full order
EVENT / DATA
viewpoints

G. Klir's Methodological Distinctions and the relationships between
the Viewpoints and Minimal Method Duals

Software and Hyper Being

AGENT

Singularity of
Hyper Being

FUNCTION

DATA

EVENT

Hyper Being singularity at core of Real-time System

GASM and Minimal Methods of Design
are duals

Meta-methods unify
viewpoints in each Rule of
the Gurevich ASM

T
'q_‘
~
Y

AGENT [FUNCTION

AN

Minimal / \ Minimal
Method RULES Method
Dual A Dual B

N /

EVENT / DATA !

Methods are bridges
between separated
viewpoints that produce
slices of Turing Machines

ISEM

Four viewpoints on Real-time System Design

Minimal methods are slices of a Turning machine and that
explains the wholeness of the methodological field

Viewpoints related to G. Klir ASPS Methodological
Distinctions causes Field to be lopsided

Fits into Klir’s concept of Background Variables
— Population, Space, Time

Many of the minimal methods appear in UML/SYSML
profiles

Each minimal method can be expressed in its own
Architectural Domain Specific Language (ADSL)

See Wild Software Meta-systems circa 1996

Transitioned from Software Methods research to working on Systems
Engineering Foundations

Systems Theory

interdisciplinary

Other schemas:

Systems Engineering

Pattern
Form
Domain

Schemas Theory
next higher level of abstraction

U. Eco
Kant & Platypus
Math & Geometric Schemas

Schemas Engineering

Hypothesis §’

dimensions

Pluriverse 8,9
Kosmos /7,8
World 6, 7
Domain 5,6
OpenScape 4, 5

Ten Schemas %

* Schemas are the templates of
understanding spacetime
organizations, which we project a

priori (ala Kant) >ystem 3,4

e Rule: Form 2,3
* Two Schemas per Dimension Pattern 1,2
 Two Dimensions per Schema Monad 0,1
Facet -1,0

* Nested Hierarchy with Different
Scopes
* Autopoietic Reflexive Structure

Natural Limits of our Comprehension of Organizational Structures of Phenomena

Simplicity, Smaller Scope

Greater Synthesis, Higher Synergy, Greater Scope

>

Experienced

Two

Timelines

F theory 12
M theory 11
String theory 10
Pluriverse 8,9
Kosmos 7,8
World 6, 7
Domain 5,6
Openscape 4,5
System 3,4
Form 2,3
Pattern 1,2
Monad 0,1
Facet -1,0

7+/- 2 dimensions
Independent Variables

Hypersphere surface max
Maximal Design Space
Hypersphere volume max

Design as Sign Engineering

Pieter Wisse in his dissertation pointed out the semiotic dimension of engineering

Meta-levels of the Sign
Design is the third meta-level of the sign

Kind of Kind of Mode of being-in- | Psychological | ego type
Being sign the-world concomitant

Ultra obsign handless lost singularity
Wild resign out-of-hand encompass enigma
Hyper design in-hand bear guery
Process ensign ready-to-hand grasp Dasein/eject

Pure sign present-at-hand point Subject/object

Design:

Differance (differing/deferring)

— Heidegger Being (crossed out)

— Derrida

— “slip-sliding away” (Paul Simon)
Grammatology (science of traces)
Traces of potentials in possibility

— Lead to emergent eventities

Plato’s Third type of Being in the Timeous

Differance: non-representablity

Peter Naur

— No amount of documentation can capture a design
completely, you must talk to the designer to
understand a design completely

Software as an artifact has the nature of
Differance embodied within it

Software makes systems adaptable but also
makes design very difficult

Design is fated to embody non-representable
differance

How design embodies non-
representable differance

0d - Monolectic - Dogmatic Uncritical Philosophy
1d - Dialectic - KANT static, HEGEL dynamic
2d - Trialectic - HEGEL work (prior to advent of spirit)

3d - Quadralectic — B. Fuller dynamic minimal system
4d - Pentalectic — Synergistic system and meta-system

Multilectics Structured by Meta-levels
of Being

Dogmatism of Monolectic Pure Static Point

the uncritical

od

Aufhebung 1d Dialectic Process Dynamic Grasp
Work that gives Trialectic Hyper Slippery Bear

rise to the

product 2d

Minimal System Quadralectic Wild Fragmented Encompass

3d (tetra, knot,
torus, mobius)

Pentachora in Pentalectic Ultra Singularity Lost
4d space

Composition of the Quadralectic

o L o 2 = = 2 2
8. .8 f: g8 8. .8 8. .8
Ko o2 2lqpe 2
= o o o = o o = =
= = = = = = = é =
E
collizion/ collision/
collusion cidlusicn .
DIALECTIC {— > Anti-DIALECTIC DIALECTIC AHII-DIALEPTIC
synthesis 2 synthesis synthesis g synthesis

collision/collusion
QUADRALECTIC /—————, Anti-QUADRALECTIC
super-synthesis super-synthesis

PENTALECTIC
ultra-synthesis

Quadralectics of Design:
Moments at non-representable trace level

Concept > Essence

A

\ 4

Design < Perspective

Moments of the Quadralectic

Pentalectical
Moment
simile
Insight

!

Juncture/Joining
quasi-causal

frace

NEXUS

!

requirement

Ambience

‘

Opacity
Obscuration
Unclearing
no-target

CES5s

Bystander
proclivity

actuality

Author

fendency

Amanifestation
anifestation

significance
Whole
Schema

Emptiness Void
Ultra Being

Picture

Partial Schema

Character
disposition

relevance

Wild Being
Hyper Being

Plan

Partial Schema

Reader
inclination

recognition

Quadralectic
A,
(synecdoche metonymy metaphor irony ﬁ]
Concept Essence Perspective Design
thol.ght . action, perception Expression
Representation Behavior Stance Content
formal cause efficiant cause final cause material cause
imprassion movegment positioning sen%tion
FOCUS OBJECT IMAGE SIGNATURE
atteFtion altit¢de me%ow ima$nation
presentlmoment mythicimoment pastimoment futurelmoment
function event agent data
Circumstance Situation Surroundings Context
L I ;
3 3] Pragniata
Sense Goal Vanishing Point Practice
Meaning target Behavioral Target Intentional Target Performance

Pragmatic Target
Follow thread of import Follow thread of what's happening Follow thread of tracking Follow thread of showing forth

o Marrator

==

| s

o @ .

8 @ propensity
4E=

o fulfillment
Model

Partial Schema

KEY:
master tropes
Hyper Being Agent
trace who
habitu
Syast'elsn Ahcz:t
causation w
leveraged effect
Agency
MEDIATION how
fa%lly
moments|in time
view Scene

Meta-system where

l when

Projection T urpose
why

Threads of meaning

% MNowvel
=
=R , .2
g|e Wild Being 5
o = flesh o
E|E n
o |w .
meaning
Whole Sub-schema
Schema

Four Design Viewpoints and
Quadralectic

N
=
AGENT FUNCTION 5
stance representation E
Image Focus =
surroundings circumstance £
@
3]
EVENT DATA =
behavior content 2
Object Signature o
situation context =
LL
Time Space

Peirce’s Principles of the Architectonic

Characteristic

Seventh Outside the singularity new
Sixth Poise new
Fifth Integrity Fuller
Fourth Synergy Fuller
Third Synthesis (Continuity) Peirce
Second Relata Peirce
First Isolata Peirce
Zeroth Void/Emptiness new

Neganary Inside the singularity new

Design Field is widest at the Hyper Being level
Quadralectic is inscribed in the Design Field

Ultra Subflety Affigity Simultaneity
wild Refineme&nt Q
L 2
Q , s — B -
Hyper Q Qualia c Kind D Topology bp / Synergy
O (D)} ® (.7)
- n % Q
Process 8 Spectra LluJ) Category Q O Lattice
o
Pure

being individual element array component

Design appears as
we move the
synthesis toward
higher levels of
synergy, integrity,
and poise

Sextalectic

T

2

[}

L.

©

R

©

©

>

a
R,
[
.
8
=
[
Q.

2
-
2 ZEROTH
>

CONCEPT
o
C
= FIRST
>

ESSENCE
=
= SECOND
o

PERSPECTIVE

...l
Q
0
S, THIRD
Q
@
£

DESIGN
7))
-
m ;
m OQURTH
0
_<

INSIGHT
z
_.'
Q
9 FIFTH

REALIZATION
)
SIXTH

3SIO

Fragmentation goes to
\ core of Being

Wild Being
and Hyper
Belng are 'l\ ~~~~~ contraction of
duals of each
other related
to the

contraction
and expansion

of being-in-

the-world

N\ expansion of
being-in-the-world
in-hand
bearing

\
being-in-the-world

dehiscent cracks
ground state

lcosahedron

1-12-30-20-1
vV E F

DUALITY

V EF
1-20-30-12-1

Pentahedron contracted embedding or
expansion into the fourth dimension Dodecahedron

Self-Dual
Pentahedron
1-5-10-10-5-1

VEFS

Pentalectic
has an
emergent
surplus
signified by
the fifth
Tetrahedron

Bonus
EMERGENT
EFFECT

Fifth
DIALECTIC

DIALECTIC
DlALECTIC
Anti- DIALECT!C
DIALECTIC
"
‘\ £>YN7E

PENTALECTIC

Design Landscape

We need a way Praeto Optima
to easily explore —

the design
landscape for the [
systems we build.

.

Point Design

Y
Domain <¢==p Model

Answer

Domain Specific Languages
that incorporate Models
which can be varied
to move through the design landscape
and represent domain specific concepts

as well as the minimal methods used in the
architectural domain of System Design

Conforms to
language syntax
and semantics
Not understood
by domain
experts

Code

Internal
DSL

Complex syntax
for nesting
Closed Turing
Complete

Too general
Semantics
determined by
compiler actions

DSL issues

e Difficultto

work with «

e Closerto .

Model .

Abstract
Syntax

Programming
Languages

Implementation

Tree
I N

Textual

Parser necessary
Non-standard
Technologically
Intensive

External

DSL
I I I B S S .

Non-standard
must be
developed and
added to tool

Profiles

Domain Level

e Minimal Methods
* Graphical

UML/SysML Representation
* Profiles for
Extension
* Monolithic
without unity
Design * Semantically

Weak

A Solution

Wittgenstein’s Tractatus

Unbind design language from programming
language for the design activity

Simplify Language Structure without nesting

Allow multiple connections in a single statement
— more expressive and synthetic

Semantics = Knowledge capture rather than
complier execution

Give up primary Visual representation mode
Give up primary goal of parse-ablity

Formal System

(unity), ~ completeness
b (totality)

Consistency

context

Clarity
(well-formedness)

Add Reality to the Formal Model

Cons\istency

(unity). _ completeness
: (totality)

Clarity
(well-formedness)

completeness
(totality)

----- context

Clarity
(well-formedness)

Aspects and Properties

consistency

TRUTH IDENTITY
0 >
7] =
Q I
c QO
2 =
v =
= QS
S <
7\
PRESENCE L REALITY Qo
vaIidatabi}Ky . Q
\

Para-Formality

- -

——»
"

Para-complete Hyper

’——_*
- Para-consistent Be| ng

~.--—*

Almm Para-cl .
. Clear (“=-zeser | Design
Sso \\~ MOdel
o

Model
Represented
as DSL
moving
across Design
Landscape

N~~
---—_-»

People can make up languages more easily
than they can learn already existing languages

made up by others

Fundamental Efficiency to be exploited in Domain Specific Language
Model Development

Schemas have the same structure as language and thus there is an
internal coherence between language and schemas

Language Oriented Approach unbinds Design Language from
Programming language during design process

Allows for Para-Properties related to all Aspects of Being

— Para-
. Consistency — Math of Certainty Kinds of Being

« Completeness Determinate Pure

e Clarity

» Verification Probability Process
* Validation

« Coherence Fuzzy Hyper

Propensity wild

Design of Design

Multiple relationships for one statement
Textual not graphical, at first

Exploit Synthesis not just relations
Precission vs. Precision

Synthesis vs. Analysis

Express each fact about design as it is known
— Lacks complete knowledge to start with
Use language template in Spreadsheet

— Retooling not necessary — tool already available

— Eases adoption of the core of Domain Specific Model
Development

rb rr r/— M M

Snumber
Sname
arrow
Family

Language
Package
id
Operator
Switch

Noun0/Operand0

id
Verb1l

Preposition1/Adverb1

Nounl

id

Qualifierl
Verb2
Preposition2
Noun2

id

Qualifier2
Verb3
Preposition3
Noun3

id

Qualifierd
Verb4
Preposition4
Noun4

id

Qualifierd
period
znumber

Language Statement Number
Statement Name

decoration

Language Family

cMLO1

Edgeldentifer

CORE

Domain Specific Language Name Meta

Package Name

identifier
Operator
Switch

Operand / Noun

identifier
Verb

Preposition
Noun

identifier
Quialifier
Verb
Preposition
Noun
identifier
Qualifier
Verb
Preposition
Noun
identifier
Qualifier
Verb
Preposition
Noun
identifier
Quialifier

Permanent Identifier

language
id
Define

identifier

z1

> Prefix

Operator/
-~ Operand

— SVpOq

VpOq

VpOgq

VpOg

} Postfix

Package/Preposition0
id

Operator/Verb0
Switch/Qualifer0

Noun0/Operand0
id
Verbl

Preposition1/Adverb1l
Nounl

id

Qualifierl
Verb2
Preposition2
Noun2

id

Qualifier2
Verb3
Preposition3
Noun3

id

Qualifier4
Verb4
Prepositiond
Noun4

id

Qualifierd

Four-way synthesis

Pkg/Operator) .
/Switch/ possible in each
Operand statement
[MW
Op® Pkg?(in) Switch?©
Opnd
VpOq V! pt o! gt
V2 P2 02 92
Vpoq V3 P3 03 q3
\VA&: p4 0% q4
VpOq

2 _

Meta“model = Spreadsheet language structure
hGJ;_>~ () CJ:E = c O'E i -l F"E :INN N'E(:lmm
8ESE s g7 EE 87 §% 57 g5E8 5 &EfS
36° & @ 5 23 5 = 5 oz - 3 2 ®° %

Q. =] =
IR ° § 3 T | P
2 s = S
3 =
o ‘»
2 o
Q
g
o

CMLO

CMLO1

Meta'model = Domain Specific Language (DSL)

1 -> CORE Meta language id Define identifier id s

Meta’model = Instantiated Statements in DSL

-> CORE Meta language [SEM Define identifier T1 is

id

Qualifierd
Verb4

Noun3
Preposition4

edge n

edge 6

Noun4

id

T =
-0 v
Qs 2
21 £
=l =

N
o

.z1

.z1

Reflexive Language about the ISEM Language

ISEM META Core language e b b

1 DSL language [

= . (o], (7901 [poposiion] [quiber] P
H_""fﬂ_ context a I | ¥ -
has Brtaina oomarme - oA
e Ll - r =

' | == tomplate | e g
1 —t—t perer) FL g Y
al
package =1 e structure [——
R) nl..["‘“""‘_‘;.l sequence ‘.l
b |
! =S = |
Dol o || e posiion je—p—p N
| statement | b 1 &
ray . N B AR—corar:
e | —1 topic , aa— — '

A N A metadata p————contin
s | |
o PETI — — |) .
il -] g g ==
,,,:~{_l[v§rkuv _]-- e L | ! [oinaee | Snumber |
L3

4
= e | e
o e e e 1 i
» [» elemant i)
haal u i rgwu -
] diagram le ; s S a1 I ' m,,_,.‘
— I - S emia
[y 1 .

tree s

1
b=
2
E g

gu
Y

-
N
E
0§ —>

Mﬁ
é
I

E
~
~§_

|

101119kap02b

SVpOg Template

| period |
preposition qualifier —p

has
contalns i i
contains [punctuation |
contains 1
I rontai A
template ntai contgins.

contains F| adverb

Language as structure and as text

string

T
has
[

format

A

context

!

has

DSL language

has

L

L has—]

sequence

Y
package [* has text
[
has
Y has
start

has

I—.- finish

'

| paragraph |
I

has
L d

hathas

‘]

has

statement

L

parser

has———m]

position

grammar

has

'

structure

Statements of Design facts are the

Basis of the Language

A
has " - topic e includ
section — has P S
hias EXpresses has——) 5 syntax B3
| | semantics & |expresses y l
.~ markup has
- TS — '] has phrase
association occurance =] includes
has tag Y [A] ‘
. has
end - |dEa —hasg——— ‘—‘:L_;a Category
toplcmap has has
it » element
25— - s+ —
Is i F has lé
diagram = i |y S Y
— fas— u_h; model | | | ' —| terminal
5
|_/-_/ Ay | | T is
A '
synthesis | ion le—he 1] concept is) nas
y t—=| relation [e—hes a4 P
. N N b + y
tree =] s i
N) st P nonterminal
startnode 1
. _ path] contains : :
instruction ontain switch
_na_v,—'i" . cntairs cnnl|ains
o _ Y A |
-) i) > operator operand
node | is i +

Topic Maps included in language
description to give access to Models

.
hag———— leIC includes——
is
. semantics [Texpresses— syntax
has
' |
association occurance includes
A A 4 |
::f‘\. Y Fa ¥ t
catego
—has—- a5 I'IHS g r‘_lfl
has l
h
s ——T—— model
l has
\—r'_."_l
¥ Y | Y
. l—has
synthesis —n¢s— relation |e—has concept

| has +

AST tree representation included

| tree q—has—‘ s #

has startnode
hasg i - | l
has path
edge
fos] nst:l. ‘n has
connects to
|

Operator and Operand structure

, syntax has
Se_manncs el ——a X MBS 5 85— y‘ +
phrase
includes ‘
has
N hﬁ—-— category i
is T— element
I
y has is
L4
model i is terminal
I
Ls—b ‘
concept |IT: fis— has
i | nonterminal
cantains
instruction |— Aeontaingd—— m! awitch
cntains contains
LA vy
operator operand

Semantics explicitly represented

statement
| COMERING
s—— = [OpIC includes
has——— i
ERprESSes ' s
l b semantics [=—]expresses—— syntax *
a5
X ' - has— phrase
association occurance includes
Y *\—is d ™ | h
. A%
idea N) category
—has— has?3 has
n s T element
has
T
iz is has i=
Y
tas—d—t—t— | model . i terminal
has
l Y W, N Is
[v !
\ |———
synthesis —hjs— relation -—hasashas_.__ concept 5 g — has
| T s 4
S T # nonterminal
startnode
contains
| instruction }—ﬂ:untain switch
| |
cgntains contains
Yy Y
Lz

» operator operand

Metadata

metadata containg l

Snumber

oo tains——— Sname

cntaps—————»= Arrow (tag)

contains _Fontains

o0 = family

containg

| »| language

Znumber

Recently added concepts which show
relation between topics and model

has -
has———— topic includas
) Is syntax
; semantics [expresses——
~t— markup nes
has ! |
| association occurrence €——p——, .
tag e —
dea —T—m category
- —has—T S —a!
topicmap i ;o
is has
. | is B .!E‘L Fy gy | ' has
diagram [has]
as——— model
has
k P R e
vy [¥ L | y
—h

synthesis —hgs— relation |e—has concept

| has +

Relation between operators
and operands and AST tree

free ‘___JW}W o

| F nonterminal
has startnode :
_"EIFF — th 1
— pa
instruction containg —= switch
edge |
+ ‘ contains cu-nl|ains
coronnects to + *
|y operator operand
.‘_
node | +

Combination of Syntax and Semantics
fully defines the language

: syntax has
semantics [«—expresses Yy +
| phrase
indLrIes ‘
has
has haﬁ—" category i
T— element
Y has
model s i3 terminal
Is
L:IS—' '
concept Ty b T
Is L | nonterminal
(missing)
instruction J— [omitch
cyrtains copt | Gins
LA vy

operator operand

statement

A
A5———— lg— CONRINS
. fias fopic -—— A includes———
section has |
| has BAprEsses has——) & syntax ——"es—
‘ k i has semantics (e expresses— \
marku
. has P ! - has—1 phrase
begin | association | | occurrence & —p——. '
has tag Y ‘L: A h M | ‘
has
. — catego
ﬁnd : IdEE —has—1 hasa’k—h’;; g ry
topicmap
? is —(element
'5 as——o has—1 1 —
I
Is i J has s
dia ram - has_lr:j - ¥
9 as— T model | | ™ i\ i terminal
has
’_/_f_n_h_l ‘ i5
! |
|———has |
synthesis —ngs— relation [«—res pg_4| conoept . n
\—CE\—“—ha: —1 + /
& h] hag— - :
ree 'yr h—] 1 is—1—1 "—~r—= nonterminal
has
starinode y
ih J contains
—hap——[—» pa - ;
Y P instruction bontain —=
edge A s |
* 0e 4 nlaing containg
has \ j Y v
e .ts% j5—1
Ly s > operator operand
o —
l— 15
node - s . i
4 {5

switch

CMLO1
CMLO2
CMLO3
CMLO4
CMLO5
CMLO6
CMLO7
CMLOS8
CMLO9
CML10
cML11
CML12
CML13
CcML14
CML15
CML16
CML17
CML18
CML19
CML20
CML21
CML22
CML23
CML24
CML25
CML26
CML27
CML28
CML29

Snhumber

Sname

arrow

Family

CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE

Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta

Language

Package

language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language

id

Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define
Define

Operator

Switch

identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier

Noun0/Operand0

id

Verbl

Prepositionl/Adverb

1

edge
element
grammar
instruction
language
metadata
node
nonterminal
noun
operand
operator
package
path
phrase
position
punctuation
qualifier
section
sequence
statement
structure
switch
syntax
template
terminal
text
transform
tree

verb

Nounl

>

id

Qualifierl

string

list

string

list
string

string

string
string
hierarchy

Verb2

CML30

CML31

CML32

CML33

CML34

CML35

CML115

CML36

CML37

CML38

CML39

CML40

CML41

token

token

token

token

token

token

token

token

token

token

token

token

token

is

is

is

is

is

is

is

is

is

is

is

is

is

adverb
arrow
begin
end
family
finish
paragraph
period .
preposition

Sname string
Snumber "aaannn"

start

Znumber "Znnnn"

CML161
CML170
CML171
CML173
CML172
CML154
CML166
CML155
CML148
CML147
CML150
CML164
CML43
CML44
CML45
CML46
CML122
CML125
CML47
CML48
CMLA49
CML50
CML51
CML52
CML144
CMLS53

association
category
category
category
category
concept
concept
concept
concept
concept
concept
concept
edge
element
element
element
grammar
grammar
grammar
instruction
instruction
instruction
language
language
markup
metadata

has
has
has
includes
is
has
has
has
is
is
is
is

connects

is
is

has

has

has

has
contains
contains
contains
has

has

has
contains

role
concept
relation
topic
synthesis
concept
occurrence
relation
element
node
operand
topic
node
nonterminal
terminal
position
context
parser
structure
operand
operator
switch
text
grammar
tag
arrow

CML54

CML55

CML56

CML57

CML58

CML177

CML59

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

Meta

Meta

Meta

Meta

Meta

Meta

Meta

language
language
language
language
language
language

language

id
id
id
id
id
id

id

Posit

Posit

Posit

Posit

Posit

Posit

Posit

metadata
metadata
metadata
metadata
metadata
metadata

metadata

contains

contains

contains

contains

contains

contains

contains

family
language
package
Sname
Snumber
topic

Znumber

id
id
id
id
id
id

id

for
for
for
of

of

of

statement

statement

statement

statement

statement

statement

string .
string .
string .
string .

string .

string .

CML140
CML169
CML129
CML179
CML130
CML131
CML60
CML61
CML62
CML63
CML64
CML65
CML66
CML67
CML68
CML69
CML70
CML71
CML72
CML141
CML73

CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE

Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta

language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language

language

id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id

Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit

Posit

model
model
model
model
model
model
node
node
node
node
node
node

node

id
id
id
id
id
id
id
id
id
id
id
id
id

nonterminal id

nonterminal id

noun
operand
operator
package
package
package

id
id
id
id
id
id

contains
has
has
has
has

has

connects to

has
is
is
is
is
is
has
has
is
is
is
has
has

has

start

statement
category
concept
diagram
relation
synthesis
edge
element
node
nonterminal
operand
operator
terminal
nonterminal
terminal
operand
terminal
terminal
finish
format

start

CML73
CML74
CML75
CML135
CML134
CML118
CML120
CML119
CML126
CML145
CML76
CML77
CML78
CML176
CML79
CML80
cMmL81
CML82
CML83
CML163
CML146
CML149
CML168
CML151
CML84
CMLS85
CML137
CML86

CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE

Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta

language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language

Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit

package
package
package
paragraph
paragraph
paragraph
paragraph
paragraph
parser
parser
path

path
phrase
phrase
phrase
phrase
preposition
punctuation
qualifier
relation
relation
relation
relation
relation
section
section
section
section

id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id

has

has
has
has

gives

recognizes

has

has

has

has

is

is
connects
is
qualifies
is

is

is

has

is

has

has

has

has

start
finish
start
format
separator
statement
completion
inception
tree
syntax
edge

node
element
occurrence
instruction
template
noun
period
statement
association
edge
operator
occurrence
nonterminal
begin

end
format
statement

CML87

CMLS8S8

CML124

CML175

CML89

CML90

CMLI91

CML165

CML92

CML138

CML133

CML93

CML156

CML142
CML94

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

-> CORE

CORE Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

language id

language
language
language
language
language
language
language
language
language
language
language
language
language

language

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

structure

section
section
semantics
semantics
sequence
sequence
sequence
sequence
sequence
statement
statement
statement
statement

string

id gives

id

id

id

id

id

id

id

id

id

has
includes
contains
contains
contains
has

has
expresses
gives
has

has

has

syntax id

begin
end
model
category
instruction
metadata
template
statement
position
idea

idea
sequence
topic

format

with

id

id

id

id

id

id

id

id

id

id

id

transform

id

CML95

CML96

CML123
CML97

CML174
CML98

CML99

CML153
CML167
CML152
CML132
CML100
CML101
CML102
CML103
CML104
CML105
CML136
CML143
CML106
CML107

CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE
CORE

Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta
Meta

language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language
language

language

id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id

Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit
Posit

Posit

structure
structure
structure
structure
syntax
syntax
syntax
synthesis
synthesis
synthesis
synthesis
template
template
template
template
template
template
text

text

text

text

has

has

has

has
expresses
has

has

has

has

has

is
contains
contains
contains
contains
contains
contains
has

has

has

has

instruction
metadata
semantics
template
semantics
phrase
tree
concept
occurrence
relation
idea
adverb
noun
preposition
punctuation
qualifier
verb
format
markup
package

sequence

id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id

CcML121

CML108

CML139

CML158

CML157

CML160

CML159

CML178

CML180

CML162

CML109

CML110

CML111

CML112

CML127

CML128

CML113

CML114

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

Meta

language id
language id
language id
language id
language id
language id
language id
language id
language id
language id
language id
language id
language id
language id
language id
language id
language id

language id

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

Posit

start

text

text

text

topic
topic
topic
topicmap
topicmap
topicmap
topicname
tree

tree

tree

tree

tree

tree

verb

id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id

id

has
has
is
has
has
has
contains
is
is
has
has
has
has
has
is
is

is

start

paragraph
section
string
association
occurrence
topicname
topic
diagram
diagram
variant
edge

node
node

path
abstract
concrete

operator

id
id
id
id
id

id

Modus Operendi

Make up language using existing languages as
examples

Existing languages cover architectural subjects

Domain languages should be patterned on
architectural languages

Allow single facts to be recorded

Give consolidation statements at various levels as
necessary

Exercise for the Student

— Take a complex design view chart and convert it into a
language representation that captures the knowledge

Ontology and Domain Specific
Languages

* By creating a language that describes an
expert’s view of a domain, we are producing
an ontology of that domain by identifying
significant nouns, verbs, qualifiers, and
relationships in a synthesis

* The synthesis is the multiple relationships that
can be obtained at the same time when
brought together by the statements of the
language

Features and DSLs

* Feature differences can be specified by
configuration statements added to the
language

* Feature trees allow for Product Line
Engineering and Reuse between products

* A feature language could be created to be
explicit in relation to the different features
that various versions of the product embody

Aspects and DSLs

* Cross cutting concerns are easily implemented
by small domain specific languages that
mention orthogonal concerns

* Aspects are the duals of objects
* Mass vs. Set orientation

Models and DSLs

A coherent model of a domain and its design
architecture provides a complete synthesis of
descriptive statements

Models in Mathematics are all the true
statements about a category.

Thus the DSLs implement the model explicitly in
the statements that are produced about a given
object within the design

Mathematical models must precede the
implementation of programmatic models if the
models are to be coherent

Parsers and DSLs

* Parsers can be written to read the design or
domain language and produce database or
network representations once the language
has matured so that it is no longer radically
changing

e Statement relationships can be checked and
OCL constraints applied to the model after the
flux of design has settled down

TextUML

TextUML can be used to align with UML 2.0
and should be extended to align with SysML

Using textual UML means we do not have to
reinvent the UML2 in textual form

Xtext textual UML converter can be used to
produce graphical representations

Human Readable UML is also available

Other considerations

Textual representations can be CMed in a normal GIT
or other repository

OCL can be used to enforce constraints on the model

Gurevich ASM and Wisse Metapattern methods can be
used across all the schemas as a basis for modeling
pre-design causality and computablity

This offers a bridge from Requirements to Design

Design occurs when performance questions begin to
impact the representation

Architectural Designs are the “staticware” that give a
framework for detailed design

Other options

* DSLs can be developed into External Parsed
DSLs

* They can be ported into DSL friendly

languages such as Pi, Converge, M (Oslo),
MPS.

e Other programing languages of interest (as
infrastructure) are Mira, Scala, Fortress,
Falcon, Factor (Forth)

At the Systems Engineering Level

Use DSLs to capture knowledge.

Emphasize cognitive coherence, not compile-ability
Use GASM to show causality and computability
Use Metapattern to derive objects from context

Both DSLs and GASM can be used like a SLOC to measure work
performed at the Systems level

In each case we are looking for a complete model so that the
requirements coherence can be checked through the coherence of
the GASM model or the DSL Design Model

Model is a synthesis first, not a simulation support. Simulations can
come later when the design stabilizes

The model is a support for thinking about the system that is being
built

